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Equation: A Generalized Treatment for Thermal-Motion Effects* 
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The usual crystallographic structure-factor equation, with three positional and six anisotropic-tempera- 
ture-factor coefficients, assumes that the thermal-motion probability density function is centrosymmet- 
ric. However, phenomena such as libration and anharmonic vibration can cause skewness. In this 
study, ten more coefficients per atom representing the third cumulant of the probability density function 
for thermal-motion are added to the structure-factor equation to permit a determination of the nature 
of the skewness. The Edgeworth series expansion based on the normal probability density function is 
used to analyze the results. The equations are generalized to include also the fourth cumulant, which 
describes kurtosis. The 'cumulant-expansion model' for thermal motion is a statistical model without 
kinematic constraints and provides an unbiased estimate for the skewness of the density function for 
thermal motion. Application of the model to neutron diffraction data from crystals containing methyl 
groups (which are undergoing torsional oscillation) confirms the assumption that the density functions 
for the hydrogen atoms of a methyl group are skewed as an arc about the axis of torsional oscillation. 
The model has not been applied with X-ray diffraction data; if it were, the resulting parameters would 
describe the skewness of the combined electron and thermal-motion probability density functions. 

1. Normal density function 

A variety of mathematical models can be used to de- 
scribe the time-averaged vibrational displacement of 
an atom in a crystal. The most popular model in cur- 
rent use is based on the frequency function or proba- 
bility density function (p.d.f.) of the trivariate normal 
distribution, which is written as 

IPI* t ~ ( u l ,  U2, U3 ) = 
(27/:) 3/2 

3 
× exp [ - ½  L" p~j(u~-x i) ( u J - x O ] ,  (1) 

i,j=l 

where u ~, u 2, u 3 are the contravariant components of a 
3-dimensional random variable (displacement vector), 
x~,x2,x 3 are the parameters of the mean of the p.d.f., 
and the matrix IlpeJll with covariant components is the 
inverse of the dispersion (variance-covariance) matrix 
Ila~Jll defined in equation (2) below. The determinant 
of Ilp~jl[ is denoted as Ipl. 

The characteristic function or Fourier transform of 
the p.d.f, defined in equation (1) is 

3 3 
qg(tl, t2, t3) = exp (i X xi t~-½ ~r o4Jt~tj), (2) 

i=1 i,j=l 

where i, if not used as an index, is 1 / -1 .  If we make 
the change of variables t~=2~zhi and Ila~Jll =llb~Jll/2~2 
( i , j= 1,2, 3), then multiply q(hl, h2, h3) by the atomic 
scattering factor f ( hb  h2, h3) and sum over the n atoms 
of the unit cell, we obtain 
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F(hl,h2,h3) = ~ ftc(hl,hz, h3) 
k = l  

3 3 
x exp (2zci ~r x~h , -  ~r b~h~hj), (3) 

i=I  i,j=l 

which is the usual formulation for the structure-factor 
equation with Miller indices hx,h2,h3, anisotropic- 
temperature-factor coefficients b*J ( i , j= 1,2, 3) and 
fractional positional parameters x l ,x2 ,x  3. In other 
words, a characteristic function transformed by the 
change of variables t, =2rch, ( i=  1,2,3), is a structure- 
factor equation for a unit point scatterer. The use of 
the trivariate normal p.d.f, model is called the quad- 
ratic approximation because of the quadratic form 
which appears in equation (1). Although equation (3) 
is an adequate model for most investigations in struc- 
tural crystallography, there are instances when a more 
elaborate model is justified, for example, in systems 
involving librations or anharmonic vibrations. 

2. Edgeworth series expansion 

Let us expand the characteristic function ~, of an arbi- 
trary trivariate p.d.f. ~ in terms of cumulants as 

~ !  i 2 3 
~F 2K~Jtttj ~(tl, t2, t3) = exp i i= lxit~ + -~. i.j= l 

i 3 3 
+ ~ Z 3tc~J~t~tjt~ 

~! i,j,k=l 

i 4 3 
~F 4X~4kttitjt~tl + . . . ) .  

+ ~ ~,Zk,1=l (4) 
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The terms 1K, 2K, 3K, and 4K are by definition the first 
four  cumulants  or semi-invariants (Kendall  & Stuart,  
1958) of  the p.d.f. ~ ;  they are tensors of  rank  1 through 
4 consecutively. Each of  the tensors is invariant  to 
pairwise interchanges of  its indices, so that  there are 
3, 6, 10, and 15 unique elements in the 4 successive 
tensors in the general case of  site symmetry 1. The 
numbers  of  unique elements for the 32 possible site 
symmetries are given in Table 1. The four  tensors de- 
scribe the mean,  the dispersion, the skewness, and the 
kurtosis (peakedness-flatness) of  the corresponding 
p.d.f. 

The p.d.f. ~ whose characteristic function is equa- 
tion (4) can be approximated  by an Edgeworth series 
expansion* 

* This expansion was introduced by Edgeworth (1905). The 
literature on the expansion is summarized by Wallace (1958). 
The justification for its use with multivariate probability 
density functions is a quite recent development discussed by 
Chambers (1967). Helpful texts for the univariate case are 
chapter 17 of Cramer (1946), chapter 8 of Gnedenko & 
Kolmogorov (1954) and chapter 6 of Kendall & Stuart (1958). 
Modes and cumulants are discussed in chapters 2 and 3 of 
Kendall & Stuart. 

3 
~V(ul,u2, u3 )={1- -~  S 31¢i:kDiDjDlc 

i , j ,k=l 

3 
+[2-!z - X 4KiJklD~DjDlcDl 

i , j ,k,l=l 

3 
"-~-~22 "~ 3KiJk 3tcqrsDiDjDkDqDrDs]} 

i,j,k,q,r,s=l 

X (p(ul, U2, U3) , (5) 

in which ~,  defined in equat ion (1), is called the devel- 
oping normal  p.d.f, with x = 1K and 6 = 2K. The symbol 
Dl represents the covariant  differential opera tor  O/Ou ~. 
The individual D operators  are commutat ive  since 
the space is Euclidean. For  example, DjDzD~Dk= 
D,D~DkDz=Oa/O#Ou~OulCOu z. The correction term in 
square brackets in equation (5) is omitted if 4K is not  
determined. For  purposes of  numerical evaluation, 
equat ion (5) can be reformulated in terms of  the cumu- 
lants and multivariate Hermite polynomials (Cham- 
bers, 1967; Johnson,  1969). 

When a least-squares fitting procedure based on 
observed intensities is used to evaluate the coefficients 
in the cumulant  expansion (4) t runcated after the third 

Table 1. Number of  unique coefficients in cumulant tensors o f  ranks 

Site symmetry 
p, 

1 C1 Triclinic I C~ 

m Cs 
Monoclinic 2 C2 

2/m C2n 

mm2 C2v 
Orthorhombic 222 D2 

mmm D2h 

4 C4 
$4 

4/m C4n 
Tetragonal 4mm C4v 

712m S4v 
422 D4 
4/mmm D4n 

3 C3 
$6 

Trigonal 3m Cav 
32 D3 
~m D3a 

-6 C3n 
6 C6 
6/m C6n 

Hexagonal -6m2 D3n 
6mm C6v 
622 D6 
6/mmm D6n 

23 T 
m3 Tn 

Cubic 7~3m Ta 
432 O 
m3m Oh 

1-4 [from Higman (1955)] 

1K ZK 3K 4K 
3 6 10 15 
0 6 0 15 

2 4 6 9 
1 4 4 9 
0 4 0 9 

1 3 3 6 
0 3 1 6 
0 3 0 6 

1 2 2 5 
0 2 2 5 
0 2 0 5 
1 2 2 4 
0 2 1 4 
0 2 0 4 
0 2 0 4 

1 2 4 5 
0 2 0 5 
1 2 3 4 
0 2 1 4 
0 2 0 4 

0 2 2 3 
1 2 2 3 
0 2 0 3 
0 2 1 3 
1 2 2 3 
0 2 0 3 
0 2 0 3 

0 1 1 2 
0 1 0 2 
0 1 1 2 
0 1 0 2 
0 1 0 2 
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or fourth cumulants,  the values obtained are biased by 
the missing cumulants,  which are implicit ly set to zero. 
In this paper, a true cumulant  is designated by K and 
the least-squares estimate by K. If all odd-order cumu- 
lants past ~K are omitted, as in the normal  model,  we 
obtain an unbiased estimate of the mean.]- If  all even- 
order cumulants  past  2K are omitted, we obtain an 
unbiased estimate of the dispersion. For  these reasons, 
it is better to use the mean  and dispersion obtained 
with the use of the normal  structure-factor equat ion 
(3) in the developing normal  p.d.f. ~. To combine the 
results from the normal  refinement with the results f rom 
the use of the cumulant-expansion model,  we must  use 
the extended Edgeworth expansion (Wallace, 1958). 
We define 

1 L = I K - x  and 2 L = 2 K - ~  

and using the summat ion  convention, write the Edge- 
worth expansion as 

gt(ul, u 2 , u 3) = { 1 - 1LtD~ - ~; 3K~J~DIDjD~ 
+ [½ 2LiJD~Dj + ½1L~ 1LtD~Dj 
+ ~ XLi 3K:ktD~DjDgDt + ~ 4K~JktDiDjDkDt 
+ ~ 3KlPc 3KarsDiDjDeDqDrDs] } 
X ~(u l ,u2 ,  u3).  ( 6 )  

The quanti ty in square brackets is omitted if  4K is not 
determined. 

I" The 1K values by themselves should not be considered as 
usable estimates for the atomic positional parameters when the 
series is truncated after the third or fourth cumulants; instead 
it appears best to continue to use the unbiased estimates of the 
mean obtained with the normal model. Some combination of 
the least-squares estimates to the odd-order cumulants may 
prove to be a usable alternate estimate. 

3. Structure factor equation 

If  the procedure used to derive equation (3) f rom equa- 
tion (2) is applied to equat ion (4), the resulting struc- 
ture-factor equat ion presented below, can be con- 
sidered the 'cumulant-expansion model ' .  The form of 
the equat ion is related to but not identical with the 
'generalized structure-factor formal ism'  of  Dawson 
(1967). The cumulant-expansion model  is basically a 
statistical model,  free of kinematic assumptions,  as is 
the trivariate normal  p.d.f, model  (3). In order to 
simplify the testing of this model,  it seems advisable 
to truncate the expansion after the third cumulant .  

For a crystal with n atoms in the unit cell, the struc- 
ture factor for h = (hi, h2, h3) is 

where 
F(h) = A(h) + iB(h),  (7) 

A(h)= ~ fir(h) {f~(h) cos [~r(h)]-f~'(h) sin [~r(h)]} 
r = l  

B(h)= 27 fir(h) {f~(h) sin [ar(h)] +f~'(h) cos [at(h)]}, (8) 
r = l  

and 
3 3 

~r(h)=2g S xt, h~ - ~ c~Jkh~hjhx 
l=1  i,j,k=l 

3 

fir(h)= exp ( -  Z" b~'h~h~). (9) 
i,j=l 

The variable coefficients x ~, b~J and c ~ are 1K~, 
(2g z) 2K~J, and (493/3) 3K~11~ (i,j, k = 1,2, 3). The atomic 
scattering factor f (h )  is complex with real part  f ' ( h )  
and imaginary part  f " ( h )  to account for the effects of  
anomalous  dispersion. 

Table 2. Least-squares refinement of normal model and three-cumulant model from neutron diffraction data 

Photodimer of Copper acetate Xenon UO2 (a) 
Compound isophorone(~) monohydrate(0) tetrafluoridet e) , 
Asymmetric unit C6HsO(CH3)3 Cu(C2H302) 2. H20 ½(XeF4) (1.038/~) (0.866 A) 

Neutron data used 2488 2490 622 14 17 
Parameters in normal 
model 218 167 27 4 2 
Parameters in 3-cumu- 
lant model 458 347 47 5 3 
R based on F2 or F for 
normal model 0.0523 0.0818 0.0479 0.0029 (F) 0.0068 (F) 
R based on F2 or F for 
3-cumulant model 0.0426 0.0672 0.0441 0.0021 (F) 0.0032 (F) 

Ratio of weighted 0.0710 0.0981 0.0749 0.0024 0.0085 
R factors - 1.33 - -  - 1.19 - 1"08 - 1.33 -2.83 

0.0535 0.0825 0.0693 0.0018 0.0030 
R factor ratio 
for 0.005 level 
of significance(e) 1"06 1"05 1"04 1-59 1"34 

(a) Vos & Johnson (1969). 
(b) Chidambaram & Brown (1969). 
(e) Burns, Agron & Levy (1963). 
(d) Rouse, Willis & Pryor (1968). 
(e) Hamilton (1965). 

A C 25A - 13" 
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4. Example  refinements 

The  O a k  Ridge  s t ruc ture- fac tor  least-squares  p r o g r a m  
was modif ied  to incorpora te  equa t ions  (7)-(9) and  used 
to refine several crys ta l  s tructures.  Resul ts  on  the re- 
f inement  of  crys ta l  s t ructures  wi th  the new mode l  are 
summar i zed  below. W i t h  a full  set of  th ree-d imen-  
s ional  data ,  the var iables  are usual ly  sufficiently inde- 
penden t  to p roduce  a wel l -condi t ioned l inear ized prob-  
lem which  can  be readi ly  solved wi th  the usual  least- 
squares  no rma l - equa t i ons  me thod .  

N e u t r o n  diffract ion da ta  f rom four  different struc- 
tures  were used to compare  the t h ree -cumulan t  mode l  
wi th  the n o r m a l  mode l  defined by (3). Stat is t ical  da ta  
pe r ta in ing  to the ref inements  are summar ized  in Table  2 
and  wi th  one except ion,  represent  h ighly  signif icant  
improvements .  

The  models  were each refined to convergence  unde r  
as near ly  ident ical  cond i t ions  as possible.  The  extinc- 
t ion  cor rec t ion  of  Zacha r i a sen  (1967) wi th  one adjust-  
able pa rame te r  was included in the leas t -squares  pro-  
gram.  A p h o t o d i m e r  of  i sophorone  (Vos & Johnson ,  
1969) and  copper  acetate  m o n o h y d r a t e  ( C h i d a m b a r a m  
& Brown,  1969) were chosen  because in these struc- 
tures there  are i m p o r t a n t  to rs iona l  m o t i o n s  of  the 
me thy l  groups  and  relat ively large overall  l ib ra t ions  of  
the molecules.  The  h y d r o g e n  a toms  on the two methy l  
g roups  in copper  acetate  m o n o h y d r a t e  have roo t -mean-  
square  d i sp lacement  of  near ly  0-5 A and  should  provide  
a ra ther  severe test  for the appl icabi l i ty  of  the cumu-  
l an t -expans ion  model  for l ibra t ion  effects. X e n o n  tetra-  
f luoride (Burns,  Agron  & Levy, 1963) was chosen  
because of  the very favorable  ra t io  of  n u m b e r  of  ob- 
servat ions  to var iable  parameters .  The  pa ramete r s  and  

Table  3. Structure parameters for XeF4 from neutron data of  Burns, Agron & Levy (1963) 

Equations 3 and 9 define the coefficients for the normal model and the three-cumulant model. 
The b ~j and c ~k terms listed are scaled by 104 and 105 respectively. 

Normal 
x 0 
y 0 
z 0 

bll 267 (4) 264 (4) 
bzz 130 (3) 130 (3) 
b33 161 (3) 161 (3) 
b12 14 (3) 14 (2) 
b13 50 (3) 50 (2) 
b23 - 2 (2) - 2 (2) 

C l l l  - -  0 

C 2 2 2  - -  0 

C 3 3 3  - -  0 

C112 - -  0 
C122 - -  0 
Cll3 - -  0 
C133 - -  0 
C223 - -  0 
C233 - -  0 
c123 - -  0 

Standard errors are in parentheses 
Xe F(1) F(2) 

^ ^ , , , x _  . 

3-Cumulani Normal 3-Cumulant Normal 3-Cumulant 
0 0.2644 (2) 0.2644 (4) 0.2356 (2) 0.2353 (4) 
0 0.1481 (2) 0-1481 (4) 0.0297 (2) 0.0294 (3) 
0 -0.1536 (2) -0.1531 (3) 0-3002 (1) 0-2994 (3) 

440 (4) 441 (4) 439 (4) 438 (4) 
285 (3) 283 (3) 249 (3) 249 (2) 
330 (3) 331 (3) 216 (3) 217 (2) 

- 5 9  ( 3 )  - 5 8  ( 3 )  - 8 ( 3 )  - 7 ( 2 )  

167 (3) 167 (2) - 3 0  (2) -31  (2) 
26 (3) 26 (2) - 1 3  (2) - 1 3  (2) 

m 

b 

m 

m 

m 

m 

m 

- 6  (12) - -  --36 (12) 
- -  1 6  ( 7 )  - -  - -  4 ( 5 )  

16 (8) - -  - 20 (5) 
25 (6) - -  --16 (6) 

3 (5) - -  - 3  (5) 
- 8 ( 6 )  - -  - 1 ( 5 )  

- 5 ( 6 )  - -  1 3  ( 3 )  

5 (4) - -  - 1  (4) 
2 (5) - -  4 (3) 
4 (4) - -  -- 1 (3) 

Site ~ i ] k 
symmetry ~ M u l t .  

Table  4. Element in Cartesian cumulant tensors 

After Birss (1964) 

111 222 333 112 122 113 133 223 233 123 
(1) (1) (1) (3) (3) (3) (3) (3) (3) (6) 

1 111 222 333 112 122 113 133 
m 111 222 0 112 122 0 133 
2 0 0 333 0 0 113 0 
mm2 0 0 333 0 0 113 0 

222, ~2m, 23, 213m 0 0 0 0 0 0 0. 
4, 4mm, 6, 6mm 0 0 333 0 0 113 0 

7[ 0 0 0 0 0 113 0 
3 111 222 333 --222 --111 113 0 
3m 111 0 333 0 --111 113 0 
32, (;m2 0 222 0 -- 222 0 0 0 

111 222 0 - 222 - 111 0 0 

223 
0 

223 
223 

0 
113 

-113  
113 
113 

0 
0 

233 
233 

0 
0 
0 
0 
0 
0 
0 
0 
0 

123 
0 

123 
0 

123 
0 

123 
0 
0 
0 
0 

Elements 
total 

10 
6 
4 
3 
1 

2 
2 
4 
3 
1 

2 
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standard errors from the XeF4 refinements based on 
equations (7), (8), (9) and (3) are given in Table 3 in 
order to record the numerical results for one of the 
example calculations. Finally, UO2 was included to 
permit a comparison with the generalized structure- 
factor formalism of Dawson (1967) which has been 
used to demonstrate anharmonic vibration in UO2. 

Anharmonic vibration has been demonstrated in 
several different crystals with the site symmetry 43m 
(Rouse, Willis & Pryor, 1968; Dawson, Hurley & 
Maslen, 1967). The Dawson structure-factor equation 
is derived by multiplying equation (1) by an expansion 
in powers of the displacement of the atom from its 
equilibrium position, and then performing a term by 
term Fourier transform to obtain a complex-valued 
expression for the temperature factor. By rearranging 
equation (10) of Dawson, Hurley & Maslen it is seen 
that Dawson's equation is related to the cumulant ex- 
pansion (4) by a power series expansion of an expo- 
nential factor containing the third-cumulant tensor. 
Consequently, the two methods are expected to pro- 
duce similar results. The present calculated structure 
factors for UO2 are in near perfect agreement with 
those of Rouse, Willis & Pryor. The 3K123 term is 
the only element allowed in 43rn site symmetry (see 
Table 4); its derived value in contravariant components 
based on the crystal system is ( 1 9 + 7 ) x  10 -8 for the 
1.038 A data and (23 + 2) x 10 -8 for the 0.866 A data 
(see Rouse, Willis & Pryor).* 

* In the notation of Rouse, Willis & Pryor (1968) 3K123= 

where B is the isotropic temperature factor, a is 

the cubic unit-cell parameter, k is Boltzman's constant, T is 
temperature and fl is the coefficient of the third-order term in 
their expansion of the single-particle potential distribution. 
This transformation produces values of 13 in complete agree- 
ment with those of Rouse et al. 

I .., / /  t B~  A ,,.-.,, 

\ \ \  \ ) ) ) ), i/// 

Fig. 1. Skew density map for atom F(2) of XeF4 superimposed 
• on the Edgeworth density map with the same contour levels 

drawn and higher contour levels omitted. The contour inter- 
val is 0.02 in units of 10 -12 cm./~ -3. Negative contours are 
dashed and the zero contour is omitted. The heavy line desig- 
nating the direction of the Xe-F bond originates at the nor- 
mal mean. This map is in the plane of the XeF4 molecule. 

5. Skew maps 

The p.d.f. ~ for the three cumulant form of equation 
(6) is computed from the normal mean x, the displace- 
ment from the mean 1L = 1K-x ,  the dispersion matrix 
[[81[ from the normal refinement (which is found to be 
statistically identical to 2K), and the third-rank tensor 
3K as 

3 
~(ul,u2, u3)=(1 -- ~ 1LiDi 

i - I  

3 
--~ X 3K*:IcD,DjDIc)¢(uI,u2,u3) (10) 

i , j ,k=l 

where ¢ is defined by equation (1). Departures from 
the trivariate normal model (1) can be computed as 
the antisymmetric function 

3 
Z ( / d l , ~ / 2 , / d 3 ) = (  - X 1L*D, 

/ = 1  

3 
--~ .~ 3KIJkDIDjDk)~(ul,u2, u3). (11) 

i , j ,k=l 

The computer program ORTEP (Johnson, 1965) was 
modified to calculate 'Edgeworth density maps'  de- 
fined by (10) and 'skew density maps'  defined by (11). 
Fig. 1 shows the skew map for fluorine atom F(2) of 
XeF4 superimposed on the corresponding Edgeworth 
map with the same contour levels drawn. This figure 
illustrates how the cumulant expansion model tends to 
correct the normal density function for the effects of 
libration. The 1L term of (11) moves the entire ellipsoid 
of the normal model toward the effective axis of libra- 
tion at Xe. The 3K term then adds a concentrated peak 
at position A on the side of the ellipsoid away from 
Xe and subtracts a corresponding peak at A' on the 
opposite side. The net effect is a six-point checkerboard 
arrangement of positive and negative peaks antisym- 
metric about the normal mean. The perfection of the 
result shown in Fig. 1 is considered fortuitous; and the 
corresponding skew map for atom F(1) (not shown) 
is not so easily interpreted. 

Fig. 2 shows similar maps for the methyl hydrogen 
atoms of copper acetate monohydrate.  There are some 
small non-positive regions in the Edgeworth maps but 
in the worst case, H(3), the minimum is only 3% of 
the maximum peak height. Considering the fact that 
only the first three cumulants are used, this result is 
considered quite satisfactory. It should be emphasized 
that the results are unbiased in that no kinematic con- 
straints are imposed in the model. 

6. Mode calculation 

The modes and antimodes of a p.d.f, are the local 
maxima and minima of probability density. In a centro- 
symmetric p.d.f, the center of gravity (mean) and a 
mode (or antimode) coincide. For a non-centrosym- 



t ions  metr ic  p.d.f, they m a y  differ. The mode  nearest  the 
mean  for  an  a t o m  is closely related to the cor respond-  
ing m a x i m u m  in a crys ta l lographic  Four ie r  m a p  and 
can  be used as an  a l te rnate  est imate of  the equi l ibr ium 
pos i t ion  of  the a tom.  Modes  canno t  usual ly be ob- 
ta ined  wi th  sufficient accuracy f rom a Four ie r  m a p  
because of  diffract ion ripple and  o ther  per tu rb ing  
effects. The  Edgewor th  expans ion  (10) allows an alter- 
nate  m e t h o d  for  locat ing  modes  by calcula t ing the 
roots  z = (z 1, z z, z 3) o f  the s imul taneous  non- l inear  equa-  where 

D s ~ ( z ) = 0  s = 1 , 2 , 3 .  

I f  we have an init ial  es t imate  z0 for  a mode  we can 
use the Newton  m e t h o d  (Forsy the  & Moler ,  1967) to  
ob ta in  a bet ter  es t imate Z l = Z 0 + A z  by solving the 
mat r ix  equa t ion  

G A z = Y  

. - - . . . .  
r c* ' . . - - - .  i - . - . .  

2 '  %% 
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Fig. 2. Edgeworth density maps and skew density maps for the six hydrogen atoms on the methyl groups in copper acetate mono- 
hydrate. The maps are in the plane of the hydrogen atoms of a methyl group. The contour interval is 0-02 in units of 
10-12 cm.A-3. The zero contours and higher level contours are omitted. The dashed contours signify the subtraction regions of 
the skew maps. The solid contours represent constant values of negative scattering density for the negative-scattering hydrogen 
atoms. The vertices of the triangles designate the normal mean positions of the three hydrogen atoms in a methyl group, as 
obtained by the normal least-squares refinement. 
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Grs = D r D s  ~U(z0), (r, s = 1,2, 3) 

Ys = - De  ~(Zo), (s = 1,2, 3). 

If there is a single major mode sufficiently near the 
mean, it can be found by setting z0 equal to the mean. 
Additional options were added to the computer pro- 
gram ORTEP to calculate modes by Newton's method. 
In practice, convergence was obtained in 2 to 4 cycles. 
The intermean and intermode distances for the photo- 
dimer of isophorone are shown in Fig. 3. It is apparent 
that a mode is located with less precision than is a 
mean, but it is also apparent that the intermode dis- 
tances tend to correct for foreshortened bond distances 
caused by thermal libration of the hydrogen atoms. 

7. Third-rank tensors 

A major conceptual difficulty encountered with third- 
rank tensors is the problem of developing some insight 
into what the individual coefficients mean. A first-rank 
tensor can be considered as a point in 3-space and a 
second-rank tensor as an ellipsoid; but higher-rank 
tensors are more difficult. Table 4 (adapted from Birss, 
1964) lists the unique coefficients in a Cartesian system 
for symmetric third-rank tensors on the allowed site 
symmetries of Table 1. An examination of Table 4 
gives some indications for the significance of certain 
of the coefficients. A more comprehensive approach 
is to decompose the tensors in Table 4 by group theory 
into sums of tensors of decreasing symmetry. For any 
site symmetry it is possible to find a set of orthonormal 
tensor bases which span the space (one to ten dimen- 
sions) of the tensor coefficients. The general procedure 
for a tensor of any rank is given by Sirotin (1960a, b; 
1961, 1964). A detailed decomposition of the fourth- 
rank tensors of elastic constants is given by Tu (1968). 

8. Conclusions 

The addition of the third cumulant to the structure 
factor equation leads to an unbiased estimate for the 
skewness of the probability density function of thermal 
motion. This approach is advantageous when the de- 
tailed kinematics of thermal motion are not known or 
are poorly understood. Models based on mechanistic 
considerations usually require fewer parameters than 
the present statistical model and if applicable may be 
expected to produce specific results with higher preci- 
sion. For example, the model for torsional oscillation 
derived by Brown & Chidambaram (1967) produces 
C-H bond lengths for the methyl groups of copper 
acetate monohydrate with much better internal con- 
sistency than the intermodal distances calculated with 
the present model. Those results are presented else- 
where (Chidambaram & Brown, 1969). A number of 
models have been proposed which treat the libration 
aspects of thermal motion from a mechanistic view- 
point. The published equations and several new ones 
are analyzed in great detail in a treatise on thermal 
motion by E. N. Maslen to be published in a book on 
accurate structure analysis being prepared by H.H.  
Cady, P. Coppens, R.F.  Stewart & E. N. Maslen. This 
definitive work is highly recommended for those con- 
cerned with thermal-motion analysis. 

In the present paper, the cumulant expansion model 
is applied only to neutron diffraction data because of 
the simplifying effect of the constant neutron scattering 
amplitude. The model may also be applied with X-ray 
diffraction data but the results will describe the con- 
volution of electron density with thermal displacement. 
The cumulant expansion model goes over to the gen- 
eralized structure-factor formalism of Dawson (1967) 
if exponentionals containing the higher cumulants are 
expanded in series. 

0 (10) 

I 1 "210 
(+0"014) 

H (1) H (5) 

~k l "093 C (6) 1 '092 / 
0 " 0 1 6 ~  " ~ -  0"00%.094 

1_'501_ 1"503 ~ /(+0"014) 
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Fig. 3. A comparison of intermean distances and intermode distances in the cis-anti-c&-head-to-tail  photodimer of isophorone. 
Values for intermode-minus-intermean distances are in parentheses below the intermean distances. 
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The coefficients of  the third-cumulant  tensor should 
provide addit ional  data for interpreting the thermal  
motion of molecules in terms of the rigid-body model. 
Further  work along this line is planned. 

A more detailed analysis of the cumulant  expansion 
model will be published elsewhere (Johnson, 1969). 
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Comparison of X-Ray and Neutron Diffraction Structural Results: 
A Study in Methods of Error Analysis* 

F2"3 

BY WALTER C. HAMILTON 
Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A. 

A number of crystal structures have been precisely analyzed by both X-ray and neutron diffraction. 
Comparison between the results can lead to some understanding of the type and magnitude of error 
present in one or both methods. We discuss here the nature of systematic error in crystallographic ex- 
periments and in crystal structure refinement models. Statistical methods are presented for testing the 
significance of the difference between the parameters derived in two crystallographic experiments. These 
methods are applied to existing neutron and X-ray diffraction data on oxalic acid dihydrate, hydroxy- 
apatite, s-triazine, potassium hydrogen diaspirinate and methylglyoxal bisguanylhydrazone. These 
tests show that there are strong systematic differences in thermal parameters for heavy atoms and in all 
parameters for hydrogen atoms. Differences in positional parameters for heavy atoms are marginal. 
The pattern of results strongly suggests that the differences between neutron and X-ray experiments 
have some physical basis rather than being due entirely to systematic error in one or both experiments. 
The results may also be interpreted as indicating that both position parameters and root-mean-square 
amplitudes of vibration may with care be determined to a precision of 0.001 A and an accuracy of 
0.005/~ in structures with a moderate number of atoms in the asymmetric unit. 

:: Introduction 

~n the experimental  part of the classical crystallographic 
diffraction experiment, an at tempt is made to measure 

* Research carried out at Brookhaven National Laboratory 
under contract with the U. S. Atomic Energy Commission. 

the magni tude of the structure factor ]F], where F is 
the Fourier  t ransform of the contents of one unit cell 
of  the crystal: 

F(h) = f 0(r) exp (2nih .  r )dr .  (1) 
~ J  

cell 


